Refs:

Say we have \(n\) iid uniform rvs

\[X_i \sim U(0,1), i=1 \ldots n\]

The cdf of their minimum \(Y=\min(X_1,\ldots, X_n)\) is:

\[ \begin{array}{lclr} p(Y \leq x) & = & 1 - p(Y \geq x) & \\ & = & 1- \prod_{i=1}^n p(X_i \geq x) & \color{blue}{ Y = \min(X_i) } \\ & = & 1- p(X \geq x)^n & \color{blue}{ X_i~\text{iid}~ X \sim U(0,1) } \\ & = & 1- (1-p(X \leq x))^n & \\ & = & 1- (1-x)^n & \color{blue}{ p(X \leq x) = x } \\ \end{array} \]

Thus the pdf for \(Y\) is

\[f_Y(x) = \frac{d}{dx} P(Y \leq x) = n(1-x)^{n-1}\]

We can make a simulation to confirm this result:

n <- 10

pdf.min <- function(x) {    # pdf function for the minimum
  n*(1-x)^(n-1)
}

sample.min <-  function() { # miminum of sample with n U(0,1) rvs
  min(runif(n))
}

sim.min <- replicate(1e5, sample.min()) # simulation

hist(sim.min, breaks=50, prob=T, main="pdf of Y")
curve(pdf.min, 0, 1, col="red", lwd=2, add=T)

The maximum \(Z = \max(X_1,\ldots, X_n)\) has similar development:

\[ \begin{array}{lclr} p(Z \leq x) & = & \prod_{i=1}^n p(X_i \geq x) & \\ & = & x^n & \color{blue}{ p(X \leq x) = x } \\ \end{array} \]

so, the pdf of \(Z\) is

\[f_Z(x) = nx^{n-1}\]

Again:

n <- 10

pdf.max <- function(x) {    # pdf function for the minimum
  n*x^(n-1)
}

sample.max <-  function() { # miminum of sample with n U(0,1) rvs
  max(runif(n))
}

sim.max <- replicate(1e5, sample.max()) # simulation

hist(sim.max, breaks=50, prob=T, main="pdf of Z")
curve(pdf.max, 0, 1, col="red", lwd=2, add=T)

The distribution of the range \(R=Z-Y\) of these \(n\) values should be something like this:

hist(sim.max-sim.min, breaks=50, prob=T, main="approximate pdf of R=Z-Y")

which resembles a beta distribution. But is it? Notice that the true pdf for \(R\) is not the difference \(Z-Y\) because they are not independent. To compute \(R\)’s cdf we assume that \(x\) is the minimum value and the range is \(d\).

There are two mutually exclusive events:

\[ \begin{array}{lclr} p(R \leq d) & = & \int_0^{1-d} f_Y(x) p(W) dx + p(Y \geq 1-d) & \\ & = & \int_0^{1-d} n(1-x)^{n-1} \left( \frac{d}{1-x} \right) ^{n-1} dx + d^n & \\ & = & \int_0^{1-d} n d^{n-1} dx + d^n & \\ & = & n d^{n-1} (1-d) + d^n & \\ \end{array} \]

To find the pdf:

\[f_R(x) = \frac{d}{dx} n x^{n-1} (1-x) + x^n = (1-x) x^{n-2} (n-1) n\]

We see that \(R \sim \text{Beta}(n-1,2)\)

pdf.range <- function(x) {
  (1-x)*x^(n-2)*(n-1)*n
}

pdf.beta <- function(x) dbeta(x,n-1,2)

hist(sim.max-sim.min, breaks=50, prob=T, main="pdf of R=Z-Y")
curve(pdf.range, 0, 1, col="blue", lwd=6, add=T)
curve(pdf.beta,  0, 1, col="red",  lwd=2, add=T)

If we ask what is the probability for a sample range to be greater than a value \(c\), we need to compute \(p(R \geq c)\)

\[\int_c^1 n(n-1)x^{n-2}(1-x) dx = 1 - c^{n-1} (n-c(n-1))\]

We can ask now what should the minimum \(n\) be so that the probability is greater than \(0.5\) for the sample range to be \(90\%\) of total range, ie, \(c=0.9\).

f <- function(n,c) {
  1 - c^(n-1)*(n-c*(n-1))
}

ns <- 1:60
plot(ns,f(ns,.9), type="l", col="blue")
n <- which(f(ns,.9)>0.5)[1]
abline(v=n, lty=2, col="red")

We need n=17 samples.